
Соотношение косинуса и синуса. Синус (sin x) и косинус (cos x) – свойства, графики, формулы. Связь определений из геометрии и тригонометрии
Где были рассмотрены задачи на решение прямоугольного треугольника, я пообещал изложить приём запоминания определений синуса и косинуса. Используя его, вы всегда быстро вспомните – какой катет относится к гипотенузе (прилежащий или противолежащий). Решил в «долгий ящик не откладывать», необходимый материал ниже, прошу ознакомиться 😉
Дело в том, что я не раз наблюдал, как учащиеся 10-11 классов с трудом вспоминают данные определения. Они прекрасно помнят, что катет относится к гипотенузе, а вот какой из них - забывают и путают. Цена ошибки, как вы знаете на экзамене – это потерянный бал.
Информация, которую я представлю непосредственно к математике не имеет никакого отношения. Она связана с образным мышлением, и с приёмами словесно-логической связи. Именно так, я сам, раз и на всегда запомнил данные определения. Если вы их всё же забудете, то при помощи представленных приёмов всегда легко вспомните.
Напомню определения синуса и косинуса в прямоугольном треугольнике:
Косинус острого угла в прямоугольном треугольнике - это отношение прилежащего катета к гипотенузе:
Синус острого угла в прямоугольном треугольнике - это отношение противолежащего катета к гипотенузе:
Итак, какие ассоциации у вас вызывает слово косинус?
Наверное, у каждого свои 😉 Запоминайте связку:
Таким образом, у вас сразу в памяти возникнет выражение –
«… отношение ПРИЛЕЖАЩЕГО катета к гипотенузе ».
Проблема с определением косинуса решена.
Если нужно вспомнить определение синуса в прямоугольном треугольнике, то вспомнив определение косинуса, вы без труда установите, что синус острого угла в прямоугольном треугольнике - это отношение противолежащего катета к гипотенузе. Ведь катетов всего два, если прилежащий катет «занят» косинусом, то синусу остаётся только противолежащий.
Как быть с тангенсом и котангенсом? Путаница та же. Учащиеся знают, что это отношение катетов, но проблема вспомнить какой к которому относится – то ли противолежащий к прилежащему, то ли наоборот.
Определения:
Тангенс острого угла в прямоугольном треугольнике - это отношение противолежащего катета к прилежащему:
Котангенс острого угла в прямоугольном треугольнике - это отношение прилежащего катета к противолежащему:
Как запомнить? Есть два способа. Один так же использует словесно-логическую связь, другой – математический.
СПОСОБ МАТЕМАТИЧЕСКИЙ
Есть такое определение – тангенсом острого угла называется отношение синуса угла к его косинусу:
*Запомнив формулу, вы всегда сможете определить, что тангенс острого угла в прямоугольном треугольнике - это отношение противолежащего катета к прилежащему.
Аналогично. Котангенсом острого угла называется отношение косинуса угла к его синусу:
Итак! Запомнив указанные формулы вы всегда сможете определить, что:
— тангенс острого угла в прямоугольном треугольнике - это отношение противолежащего катета к прилежащему
— котангенс острого угла в прямоугольном треугольнике - это отношение прилежащего катета к противолежащему.
СПОСОБ СЛОВЕСНО-ЛОГИЧЕСКИЙ
О тангенсе. Запомните связку:
То есть если потребуется вспомнить определение тангенса, при помощи данной логической связи, вы без труда вспомните, что это
«… отношение противолежащего катета к прилежащему»
Если речь зайдёт о котангенсе, то вспомнив определение тангенса вы без труда озвучите определение котангенса –
«… отношение прилежащего катета к противолежащему»
Есть интересный приём по запоминанию тангенса и котангенса на сайте " Математический тандем " , посмотрите.
СПОСОБ УНИВЕРСАЛЬНЫЙ
Можно просто зазубрить. Но как показывает практика, благодаря словесно-логическим связкам человек запоминает информацию надолго, и не только математическую.
Надеюсь, материал был вам полезен.
С уважением, Александр Крутицких
P.S: Буду благодарен Вам, если расскажете о сайте в социальных сетях.
Тригонометрия, как наука, зародилась на Древнем Востоке. Первые тригонометрические соотношения были выведены астрономами для создания точного календаря и ориентированию по звездам. Данные вычисления относились к сферической тригонометрии, в то время как в школьном курсе изучают соотношения сторон и угла плоского треугольника.
Тригонометрия – это раздел математики, занимающийся свойствами тригонометрических функций и зависимостью между сторонами и углами треугольников.
В период расцвета культуры и науки I тысячелетия нашей эры знания распространились с Древнего Востока в Грецию. Но основные открытия тригонометрии – это заслуга мужей арабского халифата. В частности, туркменский ученый аль-Маразви ввел такие функции, как тангенс и котангенс, составил первые таблицы значений для синусов, тангенсов и котангенсов. Понятие синуса и косинуса введены индийскими учеными. Тригонометрии посвящено немало внимания в трудах таких великих деятелей древности, как Евклида, Архимеда и Эратосфена.
Основные величины тригонометрии
Основные тригонометрические функции числового аргумента – это синус, косинус, тангенс и котангенс. Каждая из них имеет свой график: синусоида, косинусоида, тангенсоида и котангенсоида.
В основе формул для расчета значений указанных величин лежит теорема Пифагора. Школьникам она больше известна в формулировке: «Пифагоровы штаны, во все стороны равны», так как доказательство приводится на примере равнобедренного прямоугольного треугольника.
Синус, косинус и другие зависимости устанавливают связь между острыми углами и сторонами любого прямоугольного треугольника. Приведем формулы для расчета этих величин для угла A и проследим взаимосвязи тригонометрических функций:
Как видно, tg и ctg являются обратными функциями. Если представить катет a как произведение sin A и гипотенузы с, а катет b в виде cos A * c, то получим следующие формулы для тангенса и котангенса:
Тригонометрический круг
Графически соотношение упомянутых величин можно представить следующим образом:
Окружность, в данном случае, представляет собой все возможные значения угла α — от 0° до 360°. Как видно из рисунка, каждая функция принимает отрицательное или положительное значение в зависимости от величины угла. Например, sin α будет со знаком «+», если α принадлежит I и II четверти окружности, то есть, находится в промежутке от 0° до 180°. При α от 180° до 360° (III и IV четверти) sin α может быть только отрицательным значением.
Попробуем построить тригонометрические таблицы для конкретных углов и узнать значение величин.
Значения α равные 30°, 45°, 60°, 90°, 180° и так далее – называют частными случаями. Значения тригонометрических функций для них просчитаны и представлены в виде специальных таблиц.
Данные углы выбраны отнюдь не случайно. Обозначение π в таблицах стоит для радиан. Рад — это угол, при котором длина дуги окружности соответствует ее радиусу. Данная величина была введена для того, чтобы установить универсальную зависимость, при расчетах в радианах не имеет значение действительная длина радиуса в см.
Углы в таблицах для тригонометрических функций соответствуют значениям радиан:
Итак, не трудно догадаться, что 2π – это полная окружность или 360°.
Свойства тригонометрических функций: синус и косинус
Для того, чтобы рассмотреть и сравнить основные свойства синуса и косинуса, тангенса и котангенса, необходимо начертить их функции. Сделать это можно в виде кривой, расположенной в двумерной системе координат.
Рассмотри сравнительную таблицу свойств для синусоиды и косинусоиды:
Синусоида | Косинусоида |
---|---|
y = sin x | y = cos x |
ОДЗ [-1; 1] | ОДЗ [-1; 1] |
sin x = 0, при x = πk, где k ϵ Z | cos x = 0, при x = π/2 + πk, где k ϵ Z |
sin x = 1, при x = π/2 + 2πk, где k ϵ Z | cos x = 1, при x = 2πk, где k ϵ Z |
sin x = - 1, при x = 3π/2 + 2πk, где k ϵ Z | cos x = - 1, при x = π + 2πk, где k ϵ Z |
sin (-x) = - sin x, т. е. функция нечетная | cos (-x) = cos x, т. е. функция четная |
функция периодическая, наименьший период - 2π | |
sin x › 0, при x принадлежащем I и II четвертям или от 0° до 180° (2πk, π + 2πk) | cos x › 0, при x принадлежащем I и IV четвертям или от 270° до 90° (- π/2 + 2πk, π/2 + 2πk) |
sin x ‹ 0, при x принадлежащем III и IV четвертям или от 180° до 360° (π + 2πk, 2π + 2πk) | cos x ‹ 0, при x принадлежащем II и III четвертям или от 90° до 270° (π/2 + 2πk, 3π/2 + 2πk) |
возрастает на промежутке [- π/2 + 2πk, π/2 + 2πk] | возрастает на промежутке [-π + 2πk, 2πk] |
убывает на промежутках [ π/2 + 2πk, 3π/2 + 2πk] | убывает на промежутках |
производная (sin x)’ = cos x | производная (cos x)’ = - sin x |
Определить является ли функция четной или нет очень просто. Достаточно представить тригонометрический круг со знаками тригонометрических величин и мысленно «сложить» график относительно оси OX. Если знаки совпадают, функция четная, в противном случае — нечетная.
Введение радиан и перечисление основных свойств синусоиды и косинусоиды позволяют привести следующую закономерность:
Убедиться в верности формулы очень просто. Например, для x = π/2 синус равен 1, как и косинус x = 0. Проверку можно осуществить обративших к таблицам или проследив кривые функций для заданных значений.
Свойства тангенсоиды и котангенсоиды
Графики функций тангенса и котангенса значительно отличаются от синусоиды и косинусоиды. Величины tg и ctg являются обратными друг другу.
- Y = tg x.
- Тангенсоида стремится к значениям y при x = π/2 + πk, но никогда не достигает их.
- Наименьший положительный период тангенсоиды равен π.
- Tg (- x) = — tg x, т. е. функция нечетная.
- Tg x = 0, при x = πk.
- Функция является возрастающей.
- Tg x › 0, при x ϵ (πk, π/2 + πk).
- Tg x ‹ 0, при x ϵ (— π/2 + πk, πk).
- Производная (tg x)’ = 1/cos 2 x .
Рассмотрим графическое изображение котангенсоиды ниже по тексту.
Основные свойства котангенсоиды:
- Y = ctg x.
- В отличие от функций синуса и косинуса, в тангенсоиде Y может принимать значения множества всех действительных чисел.
- Котангенсоида стремится к значениям y при x = πk, но никогда не достигает их.
- Наименьший положительный период котангенсоиды равен π.
- Ctg (- x) = — ctg x, т. е. функция нечетная.
- Ctg x = 0, при x = π/2 + πk.
- Функция является убывающей.
- Ctg x › 0, при x ϵ (πk, π/2 + πk).
- Ctg x ‹ 0, при x ϵ (π/2 + πk, πk).
- Производная (ctg x)’ = — 1/sin 2 x Исправить
Если построить единичную окружность с центром в начале координат, и задать произвольное значение аргумента x 0 и отсчитать от оси Ox угол x 0, то этому углу на единичной окружности соответствует некоторая точка A (рис. 1) а ее проекцией на ось Ох будет точка М . Длина отрезка ОМ равна абсолютной величине абсциссы точки A . Данному значению аргумента x 0 сопоставлено значение функции y = cos x 0 как абсциссы точки А . Соответственно точка В (x 0 ; у 0) принадлежит графику функции у = cos х (рис. 2). Если точка А находится правее оси Оу , токосинус будет положителен, если же левее – отрицателен. Но в любом случае точка А не может покинуть окружность. Поэтому косинус лежит в пределах от –1 до 1:
–1 = cos x = 1.
Дополнительный поворот на любой угол, кратный 2p , возвращает точку A на то же место. Поэтому функция у = cos x p :
cos (x + 2p ) = cos x.
Если взять два значения аргумента, равные по абсолютной величине, но противоположные по знаку, x и –x , найти на окружности соответствующие точки A x и А -x . Как видно на рис. 3 их проекцией на ось Ох является одна и та же точка М . Поэтому
cos (–x ) = cos (x ),
т.е. косинус – четная функция, f (–x ) = f (x ).
Значит, можно исследовать свойства функции y = cos х на отрезке , а затем учесть ее четность и периодичность.
При х = 0 точка А лежит на оси Ох , ее абсцисса равна 1, а потому cos 0 = 1. С увеличением х точка А передвигается по окружности вверх и влево, ее проекция, естественно, только влево, и при х = p /2 косинус становится равен 0. Точка A в этот момент поднимается на максимальную высоту, а затем продолжает двигаться влево, но уже снижаясь. Ее абсцисса все убывает, пока не достигнет наименьшего значения, равного –1 при х = p . Таким образом, на отрезке функция у = cos х монотонно убывает от 1 до –1 (рис. 4, 5).
Из четности косинуса следует, что на отрезке [–p , 0] функция монотонно возрастает от –1 до 1, принимая нулевое значение при х = –p /2. Если взять несколько периодов, получится волнообразная кривая (рис. 6).
Итак, функция y = cos x принимает нулевые значения в точках х = p /2 + kp , где k – любое целое число. Максимумы, равные 1, достигаются в точках х = 2kp , т.е. с шагом 2p , а минимумы, равные –1, в точках х = p + 2kp .
Функция y = sin х.
На единичной окружности углу x 0 соответствует точка А (рис. 7), а ее проекцией на ось Оу будет точка N . З начение функции у 0 = sin x 0 определяется как ордината точки А . Точка В (угол x 0 , у 0) принадлежит графику функции y = sin x (рис. 8). Ясно, что функция y = sin x периодическая, ее период равен 2p :
sin (x + 2p ) = sin (x ).
Для двух значений аргумента, х и – , проекции соответствующих им точек А x и А -x на ось Оу расположены симметрично относительно точки О . Поэтому
sin (–x ) = –sin (x ),
т.е. синус – функция нечетная, f(–x ) = –f(x ) (рис. 9).
Если точку A повернуть относительно точки О на угол p /2 против часовой стрелки (другими словами, если угол х увеличить на p /2), то ее ордината в новом положении будет равна абсциссе в старом. А значит,
sin (x + p /2) = cos x.
Иначе, синус – это косинус, «запоздавший» на p /2, поскольку любое значение косинуса «повторится» в синусе, когда аргумент возрастет на p /2. И чтобы построить график синуса, достаточно сдвинуть график косинуса на p /2 вправо (рис. 10). Чрезвычайно важное свойство синуса выражается равенством
Геометрический смысл равенства виден из рис. 11. Здесь х – это половина дуги АВ , а sin х – половина соответствующей хорды. Очевидно, что по мере сближения точек А и В длина хорды все точнее приближается к длине дуги. Из того же рисунка несложно извлечь неравенство
|sin x | x|, верное при любом х .
Формулу (*) математики называют замечательным пределом. Из нее, в частности, следует, что sin х » х при малых х .
Функции у = tg х, у = ctg х . Две другие тригонометрические функции – тангенс и котангенс проще всего определить как отношения уже известных нам синуса и косинуса:
Как синус и косинус, тангенс и котангенс – функции периодические, но их периоды равны p , т.е. они вдвое меньше, чем у синуса и косинуса. Причина этого понятна: если синус и косинус оба поменяют знаки, то их отношение не изменится.
Поскольку в знаменателе тангенса находится косинус, то тангенс не определен в тех точках, где косинус равен 0, – когда х = p /2 + kp . Во всех остальных точках он монотонно возрастает. Прямые х = p /2 + kp для тангенса являются вертикальными асимптотами. В точках kp тангенс и угловой коэффициент составляют 0 и 1 соответственно (рис. 12).
Котангенс не определен там, где синус равен 0 (когда х = kp ). В остальных точках он монотонно убывает, а прямые х = kp – его вертикальные асимптоты. В точках х = p /2 + kp котангенс обращается в 0, а угловой коэффициент в этих точках равен –1 (рис. 13).
Четность и периодичность.
Функция называется четной, если f (–x ) = f (x ). Функции косинус и секанс – четные, а синус, тангенс, котангенс и косеканс – функции нечетные:
sin (–α) = – sin α | tg (–α) = – tg α |
cos (–α) = cos α | ctg (–α) = – ctg α |
sec (–α) = sec α | cosec (–α) = – cosec α |
Свойства четности вытекают из симметричности точек P a и Р - a (рис. 14) относительно оси х . При такой симметрии ордината точки меняет знак ((х ; у ) переходит в (х ; –у)). Все функции – периодические, синус, косинус, секанс и косеканс имеют период 2p , а тангенс и котангенс – p :
sin (α + 2kπ ) = sin α | cos (α + 2kπ ) = cos α |
tg (α + kπ ) = tg α | ctg (α + kπ ) = ctg α |
sec (α + 2kπ ) = sec α | cosec (α + 2kπ ) = cosec α |
Периодичность синуса и косинуса следует из того, что все точки P a + 2 kp , где k = 0, ±1, ±2,…, совпадают, а периодичность тангенса и котангенса – из того, что точки P a + kp поочередно попадают в две диаметрально противоположные точки окружности, дающие одну и ту же точку на оси тангенсов.
Основные свойства тригонометрических функций могут быть сведены в таблицу:
Функция | Область определения | Множество значений | Четность | Участки монотонности (k = 0, ± 1, ± 2,…) |
sin x | –Ґ x Ґ | [–1, +1] | нечетная | возрастает при x О ((4k – 1) p /2, (4k + 1) p /2),убывает при x О ((4k + 1) p /2, (4k + 3) p /2) |
cos x | –Ґ x Ґ | [–1, +1] | четная | Возрастает приx О ((2k – 1) p , 2kp ),убывает приx О (2kp , (2k + 1) p ) |
tg x | x № p /2 + p k | (–Ґ , +Ґ ) | нечетная | возрастает приx О ((2k – 1) p /2, (2k + 1) p /2) |
ctg x | x № p k | (–Ґ , +Ґ ) | нечетная | убывает приx О (kp , (k + 1) p ) |
sec x | x № p /2 + p k | (–Ґ , –1] И [+1, +Ґ ) | четная | Возрастает приx О (2kp , (2k + 1) p ),убывает приx О ((2k – 1) p , 2kp ) |
cosec x | x № p k | (–Ґ , –1] И [+1, +Ґ ) | нечетная | возрастает приx О ((4k + 1) p /2, (4k + 3) p /2),убывает приx О ((4k – 1) p /2, (4k + 1) p /2) |
Формулы приведения.
По этим формулам значение тригонометрической функции аргумента a , где p /2 a p , можно привести к значению функции аргумента a , где 0 a p /2, как той же, так и дополнительной к ней.
Аргумент b | ![]() |
+ a | p – a | p + a | + a | + a | 2p – a |
sin b | cos a | cos a | sin a | –sin a | –cos a | –cos a | –sin a |
cos b | sin a | –sin a | –cos a | –cos a | –sin a | sin a | cos a |
Поэтому в таблицах тригонометрических функций даются значения только для острых углов, причем достаточно ограничиться, например, синусом и тангенсом. В таблице даны только наиболее употребительные формулы для синуса и косинуса. Из них легко получить формулы для тангенса и котангенса. При приведении функции от аргумента вида kp /2 ± a , где k – целое число, к функции от аргумента a :
1) название функции сохраняется, если k четное, и меняется на «дополнительное», если k нечетное;
2) знак в правой части совпадает со знаком приводимой функции в точке kp /2 ± a , если угол a острый.
Например, при приведении ctg (a – p /2) убеждаемся, что a – p /2 при 0 a p /2 лежит в четвертом квадранте, где котангенс отрицателен, и, по правилу 1, меняем название функции: ctg (a – p /2) = –tg a .
Формулы сложения.
Формулы кратных углов.
Эти формулы выводятся прямо из формул сложения:
sin 2a = 2 sin a cos a ;
cos 2a = cos 2 a – sin 2 a = 2 cos 2 a – 1 = 1 – 2 sin 2 a ;
sin 3a = 3 sin a – 4 sin 3 a ;
cos 3a = 4 cos 3 a – 3 cos a ;
Формулу для cos 3a использовал Франсуа Виет при решении кубического уравнения. Он же впервые нашел выражения для cos n a и sin n a , которые позже были получены более простым путем из формулы Муавра.
Если в формулах двойного аргумента заменить a на a /2, их можно преобразовать в формулы половинных углов:
Формулы универсальной подстановки.
Используя эти формулы, выражение, включающее разные тригонометрические функции от одного и того же аргумента, можно переписать как рациональное выражение от одной функции tg (a /2), это бывает полезно при решении некоторых уравнений:
![]() |
|
![]() |
![]() |
Формулы преобразования сумм в произведения и произведений в суммы.
До появления компьютеров эти формулы использовались для упрощения вычислений. Расчеты производились с помощью логарифмических таблиц, а позже – логарифмической линейки, т.к. логарифмы лучше всего приспособлены для умножения чисел, поэтому все исходные выражения приводили к виду, удобному для логарифмирования, т.е. к произведениям, например:
2 sin a sin b = cos (a – b ) – cos (a + b );
2 cos a cos b = cos (a – b ) + cos (a + b );
2 sin a cos b = sin (a – b ) + sin (a + b ).
Формулы для функций тангенса и котангенса можно получить из вышеприведенных.
Формулы понижения степени.
Из формул кратного аргумента выводятся формулы:
sin 2 a = (1 – cos 2a )/2; | cos 2 a = (1 + cos 2a )/2; |
sin 3 a = (3 sin a – sin 3a )/4; | cos 3 a = (3 cosa + cos 3 a )/4. |
С помощью этих формул тригонометрические уравнения можно приводить к уравнениям более низких степеней. Таким же образом можно вывести и формулы понижения для более высоких степеней синуса и косинуса.
Производные и интегралы тригонометрических функций | |
(sin x )` = cos x ; | (cos x )` = –sin x ; |
(tg x )` = ; | (ctg x )` = – ; |
т sin x dx = –cos x + C ; | т cos x dx = sin x + C ; |
т tg x dx = –ln |cos x | + C ; | т ctg x dx = ln |sin x | + C ; |
Каждая тригонометрическая функция в каждой точке своей области определения непрерывна и бесконечно дифференцируема. Причем и производные тригонометрических функций являются тригонометрическими функциями, а при интегрировании получаются так же тригонометрические функции или их логарифмы. Интегралы от рациональных комбинаций тригонометрических функций всегда являются элементарными функциями.
Представление тригонометрических функций в виде степенных рядов и бесконечных произведений.
Все тригонометрические функции допускают разложение в степенные ряды. При этом функции sin x b cos x представляются рядами. сходящимися для всех значений x :
Эти ряды можно использовать для получения приближенных выражений sin x и cos x при малых значениях x :
при |x| p /2;
при 0 x| p
(B n – числа Бернулли).
Функции sin x и cos x могут быть представлены в виде бесконечных произведений:
Тригонометрическая система 1, cos x , sin x , cos 2x , sin 2x , ¼, cos nx , sin nx , ¼, образует на отрезке [–p , p ] ортогональную систему функций, что дает возможность представления функций в виде тригонометрических рядов.
определяются как аналитические продолжения соответствующих тригонометрических функций действительного аргумента в комплексную плоскость. Так, sin z и cos z могут быть определены с помощью рядов для sin x и cos x , если вместо x поставить z :
Эти ряды сходятся по всей плоскости, поэтому sin z и cos z – целые функции.
Тангенс и котангенс определяются формулами:
Функции tg z и ctg z – мероморфные функции. Полюсы tg z и sec z – простые (1-го порядка) и находятся в точках z = p /2 + p n, полюсы ctg z и cosec z – также простые и находятся в точках z = p n , n = 0, ±1, ±2,…
Все формулы, справедливые для тригонометрических функций действительного аргумента, справедливы и для комплексного. В частности,
sin (–z ) = –sin z ,
cos (–z ) = cos z ,
tg (–z ) = –tg z ,
ctg (–z ) = –ctg z,
т.е. четность и нечетность сохраняются. Сохраняются и формулы
sin (z + 2p ) = sin z , (z + 2p ) = cos z , (z + p ) = tg z , (z + p ) = ctg z ,
т.е. периодичность также сохраняется, причем периоды такие же, как и для функций действительного аргумента.
Тригонометрические функции могут быть выражены через показательную функцию от чисто мнимого аргумента:
Обратно, e iz выражается через cos z и sin z по формуле:
e iz = cos z + i sin z
Эти формулы носят название формул Эйлера . Леонард Эйлер вывел их в 1743.
Тригонометрические функции также можно выразить через гиперболические функции:
z = –i sh iz , cos z = ch iz, z = –i th iz.
где sh, ch и th – гиперболические синус, косинус и тангенс.
Тригонометрические функции комплексного аргумента z = x + iy , где x и y – действительные числа, можно выразить через тригонометрические и гиперболические функции действительных аргументов, например:
sin (x + iy ) = sin x ch y + i cos x sh y ;
cos (x + iy ) = cos x ch y + i sin x sh y .
Синус и косинус комплексного аргумента могут принимать действительные значения, превосходящие 1 по абсолютной величине. Например:
Если неизвестный угол входит в уравнение как аргумент тригонометрических функций, то уравнение называется тригонометрическим. Такие уравнения настолько часто встречаются, что методы их решения очень подробно и тщательно разработаны. С помощью различных приемов и формул тригонометрические уравнения сводят к уравнениям вида f (x ) = a , где f – какая-либо из простейших тригонометрических функций: синус, косинус, тангенс или котангенс. Затем выражают аргумент x этой функции через ее известное значение а.
Поскольку тригонометрические функции периодичны, одному и тому же а из области значений отвечает бесконечно много значений аргумента, и решения уравнения нельзя записать в виде одной функции от а . Поэтому в области определения каждой из основных тригонометрических функций выделяют участок, на котором она принимает все свои значения, причем каждое только один раз, и находят функцию, обратную ей на этом участке. Такие функции обозначают, приписывая приставку агс (дуга) к названию исходной функции, и называют обратными тригонометрическими функциями или просто аркфункциями.
Обратные тригонометрические функции.
Для sin х , cos х , tg х и ctg х можно определить обратные функции. Они обозначаются соответственно arcsin х (читается «арксинус x »), arcos x , arctg x и arcctg x . По определению, arcsin х есть такое число у, что
sin у = х .
Аналогично и для других обратных тригонометрических функций. Но такое определение страдает некоторой неточностью.
Если отразить sin х , cos х , tg х и ctg х относительно биссектрисы первого и третьего квадрантов координатной плоскости, то функции из-за их периодичности становятся неоднозначными: одному и тому же синусу (косинусу, тангенсу, котангенсу) соответствует бесконечное количество углов.
Чтобы избавиться от неоднозначности, из графика каждой тригонометрической функции выделяется участок кривой шириной p , при этом нужно, чтобы между аргументом и значением функции соблюдалось взаимно однозначное соответствие. Выбираются участки около начала координат. Для синуса в качестве «интервала взаимной однозначности» берется отрезок [–p /2, p /2], на котором синус монотонно возрастает от –1 до 1, для косинуса – отрезок , для тангенса и котангенса соответственно интервалы (–p /2, p /2) и (0, p ). Каждая кривая на интервале отражается относительно биссектрисы и теперь можно определить обратные тригонометрические функции. Например, пусть задано значение аргумента x 0 , такое, что 0 Ј x 0 Ј 1. Тогда значением функции y 0 = arcsin x 0 будет единственное значение у 0 , такое, что –p /2 Ј у 0 Ј p /2 и x 0 = sin y 0 .
Таким образом, арксинус – это функция агсsin а , определенная на отрезке [–1, 1] и равная при каждом а такому значению a , –p /2 a p /2, что sin a = а. Ее очень удобно представлять с помощью единичной окружности (рис. 15). При |а| 1 на окружности есть две точки с ординатой a , симметричные относительно оси у. Одной из них отвечает угол a = arcsin а , а другой – угол p - а. С учетом периодичности синуса решение уравнения sin x = а записывается следующим образом:
х = (–1) n arcsin a + 2p n ,
где n = 0, ±1, ±2,...
Так же решаются другие простейшие тригонометрические уравнения:
cos x = a , –1 = a = 1;
x = ±arcos a + 2p n ,
где п = 0, ±1, ±2,... (рис. 16);
tg х = a ;
x = arctg a + p n,
где п = 0, ±1, ±2,... (рис. 17);
ctg х = а ;
х = arcctg a + p n,
где п = 0, ±1, ±2,... (рис. 18).
Основные свойства обратных тригонометрических функций:
arcsin х (рис. 19): область определения – отрезок [–1, 1]; область значений – [–p /2, p /2], монотонно возрастающая функция;
arccos х (рис. 20): область определения – отрезок [–1, 1]; область значений – ; монотонно убывающая функция;
arctg х (рис. 21): область определения – все действительные числа; область значений – интервал (–p /2, p /2); монотонно возрастающая функция; прямые у = –p /2 и у = p /2 – горизонтальные асимптоты;
arcctg х (рис. 22): область определения – все действительные числа; область значений – интервал (0, p ); монотонно убывающая функция; прямые y = 0 и у = p – горизонтальные асимптоты.
Т.к. тригонометрические функции комплексного аргумента sin z и cos z (в отличие от функций действительного аргумента) принимают все комплексные значения, то и уравнения sin z = a и cos z = a имеют решения для любого комплексного a x и y – действительные числа, имеют место неравенства
½|e\e y –e -y | ≤|sin z |≤½(e y +e -y),
½|e y –e -y | ≤|cos z |≤½(e y +e -y ),
из которых при y ® Ґ вытекают асимптотические формулы (равномерно относительно x )
|sin z | » 1/2 e |y| ,
|cos z | » 1/2 e |y| .
Тригонометрические функции возникли впервые в связи с исследованиями в астрономии и геометрии. Соотношения отрезков в треугольнике и окружности, являющиеся по существу тригонометрическими функциями, встречаются уже в 3 в. до н. э. в работах математиков Древней Греции – Евклида , Архимеда , Аполлония Пергского и других, однако эти соотношения не являлись самостоятельным объектом исследования, так что тригонометрические функции как таковые ими не изучались. Они рассматривались первоначально как отрезки и в такой форме применялись Аристархом (конец 4 – 2-я половина 3 вв. до н. э.), Гиппархом (2 в. до н. э.), Менелаем (1 в. н. э.) и Птолемеем (2 в. н. э.) при решении сферических треугольников. Птолемей составил первую таблицу хорд для острых углов через 30" с точностью до 10 –6 . Это была первая таблица синусов. Как отношение функция sin a встречается уже у Ариабхаты (конец 5 в.). Функции tg a и ctg a встречаются у аль-Баттани (2-я половина 9 – начало 10 вв.) и Абуль-Вефа (10 в.), который употребляет также sec a и cosec a . Ариабхата знал уже формулу (sin 2 a + cos 2 a ) = 1, а также формулы sin и cos половинного угла, с помощью которых построил таблицы синусов для углов через 3°45"; исходя из известных значений тригонометрических функций для простейших аргументов. Бхаскара (12 в.) дал способ построения таблиц через 1 с помощью формул сложения. Формулы преобразования суммы и разности тригонометрических функций различных аргументов в произведение выводились Региомонтаном (15 в.) и Дж. Непером в связи с изобретением последним логарифмов (1614). Региомонтан дал таблицу значений синуса через 1". Разложение тригонометрических функций в степенные ряды получено И.Ньютоном (1669). В современную форму теорию тригонометрических функций привел Л.Эйлер (18 в.). Ему принадлежат их определение для действительного и комплексного аргументов, принятая ныне символика, установление связи с показательной функцией и ортогональности системы синусов и косинусов.
Задание
.
Найти значение х при .
Решение.
Найти значение аргумента функции , при котором он равен какому-либо значению, означает определить, при каких аргументах значение синуса будет именно таким, как указано в условии.
В данном случае нам нужно выяснить, при каких значениях значение синуса будет равным 1/2. Это можно сделать несколькими способами.
Например, использовать , по которому определить при каких значениях х функция синус будет равна 1/2.
Другим способом является использование . Напомню, что значения синусов лежат на оси Оу.
Самым распространенным способом является обращение к , особенно если речь идет о таких стандартных для этой функции значениях, как 1/2.
Во всех случаях не стоит забывать об одном из важнейших свойств синуса — о его периоде.
Найдем в таблице значение 1/2 для синуса и посмотрим какие аргументы ему соответствуют. Интересующие нас аргументы равны Пи / 6 и 5Пи / 6.
Запишем все корни, которые удовлетворяют заданное уравнение. Для этого записываем интересующий нас неизвестный аргумент х и одно из значений аргумента, полученное из таблицы, то есть Пи / 6. Запишем для него, учитывая период синуса, все значения аргумента:
Возьмем второе значение, и проделаем те же шаги, что и в предыдущем случае:
Полным решением исходного уравнения будет: и
q
может принимать значение любого целого числа.
Понятия синуса, косинуса, тангенса и котангенса являются основными категориями тригонометрии — раздела математики, и неразрывно связаны с определением угла. Владение этой математической наукой требует запоминания и понимания формул и теорем, а также развитого пространственного мышления. Именно поэтому у школьников и студентов тригонометрические вычисления нередко вызывают трудности. Чтобы побороть их, следует подробнее познакомиться с тригонометрическими функциями и формулами.
Понятия в тригонометрии
Чтобы разобраться в базовых понятиях тригонометрии, следует сначала определиться с тем, что такое прямоугольный треугольник и угол в окружности, и почему именно с ними связаны все основные тригонометрические вычисления. Треугольник, в котором один из углов имеет величину 90 градусов, является прямоугольным. Исторически эта фигура часто использовалась людьми в архитектуре, навигации, искусстве, астрономии. Соответственно, изучая и анализируя свойства этой фигуры, люди пришли к вычислению соответствующих соотношений её параметров.
Основные категории, связанные с прямоугольными треугольниками — гипотенуза и катеты. Гипотенуза — сторона треугольника, лежащая против прямого угла. Катеты, соответственно, это остальные две стороны. Сумма углов любых треугольников всегда равна 180 градусам.
Сферическая тригонометрия — раздел тригонометрии, который не изучается в школе, однако в прикладных науках типа астрономии и геодезии, учёные пользуются именно им. Особенность треугольника в сферической тригонометрии в том, что он всегда имеет сумму углов более 180 градусов.
Углы треугольника
В прямоугольном треугольнике синусом угла является отношение катета, противолежащего искомому углу, к гипотенузе треугольника. Соответственно, косинус — это отношение прилежащего катета и гипотенузы. Оба эти значения всегда имеют величину меньше единицы, так как гипотенуза всегда длиннее катета.
Тангенс угла — величина, равная отношению противолежащего катета к прилежащему катету искомого угла, или же синуса к косинусу. Котангенс, в свою очередь, это отношение прилежащего катета искомого угла к противолежащему кактету. Котангенс угла можно также получить, разделив единицу на значение тангенса.
Единичная окружность
Единичная окружность в геометрии — окружность, радиус которой равен единице. Такая окружность строится в декартовой системе координат, при этом центр окружности совпадает с точкой начала координат, а начальное положение вектора радиуса определено по положительному направлению оси Х (оси абсцисс). Каждая точка окружности имеет две координаты: ХХ и YY, то есть координаты абсцисс и ординат. Выбрав на окружности любую точку в плоскости ХХ, и опустив с неё перпендикуляр на ось абсцисс, получаем прямоугольный треугольник, образованный радиусом до выбранной точки (обозначим её буквой С), перпендикуляром, проведённым до оси Х (точка пересечения обозначается буквой G), а отрезком оси абсцисс между началом координат (точка обозначена буквой А) и точкой пересечения G. Полученный треугольник АСG — прямоугольный треугольник, вписанный в окружность, где AG — гипотенуза, а АС и GC — катеты. Угол между радиусом окружности АС и отрезком оси абсцисс с обозначением AG, определим как α (альфа). Так, cos α = AG/AC. Учитывая, что АС — это радиус единичной окружности, и он равен единице, получится, что cos α=AG. Аналогично, sin α=CG.
Кроме того, зная эти данные, можно определить координату точки С на окружности, так как cos α=AG, а sin α=CG, значит, точка С имеет заданные координаты (cos α;sin α). Зная, что тангенс равен отношению синуса к косинусу, можно определить, что tg α = y/х, а ctg α = х/y. Рассматривая углы в отрицательной системе координат, можно рассчитать, что значения синуса и косинуса некоторых углов могут быть отрицательными.
Вычисления и основные формулы
Значения тригонометрических функций
Рассмотрев сущность тригонометрических функций через единичную окружность, можно вывести значения этих функций для некоторых углов. Значения перечислены в таблице ниже.
Простейшие тригонометрические тождества
Уравнения, в которых под знаком тригонометрической функции присутствует неизвестное значение, называются тригонометрическими. Тождества со значением sin х = α, k — любое целое число:
- sin х = 0, х = πk.
- 2. sin х = 1, х = π/2 + 2πk.
- sin х = -1, х = -π/2 + 2πk.
- sin х = а, |a| > 1, нет решений.
- sin х = а, |a| ≦ 1, х = (-1)^k * arcsin α + πk.
Тождества со значением cos х = а, где k — любое целое число:
- cos х = 0, х = π/2 + πk.
- cos х = 1, х = 2πk.
- cos х = -1, х = π + 2πk.
- cos х = а, |a| > 1, нет решений.
- cos х = а, |a| ≦ 1, х = ±arccos α + 2πk.
Тождества со значением tg х = а, где k — любое целое число:
- tg х = 0, х = π/2 + πk.
- tg х = а, х = arctg α + πk.
Тождества со значением ctg х = а, где k — любое целое число:
- ctg х = 0, х = π/2 + πk.
- ctg х = а, х = arcctg α + πk.
Формулы приведения
Эта категория постоянных формул обозначает методы, с помощью которых можно перейти от тригонометрических функций вида к функциям аргумента, то есть привести синус, косинус, тангенс и котангенс угла любого значения к соответствующим показателям угла интервала от 0 до 90 градусов для большего удобства вычислений.
Формулы приведения функций для синуса угла выглядят таким образом:
- sin(900 — α) = α;
- sin(900 + α) = cos α;
- sin(1800 — α) = sin α;
- sin(1800 + α) = -sin α;
- sin(2700 — α) = -cos α;
- sin(2700 + α) = -cos α;
- sin(3600 — α) = -sin α;
- sin(3600 + α) = sin α.
Для косинуса угла:
- cos(900 — α) = sin α;
- cos(900 + α) = -sin α;
- cos(1800 — α) = -cos α;
- cos(1800 + α) = -cos α;
- cos(2700 — α) = -sin α;
- cos(2700 + α) = sin α;
- cos(3600 — α) = cos α;
- cos(3600 + α) = cos α.
Использование вышеуказанных формул возможно при соблюдении двух правил. Во-первых, если угол можно представить как значение (π/2 ± a) или (3π/2 ± a), значение функции меняется:
- с sin на cos;
- с cos на sin;
- с tg на ctg;
- с ctg на tg.
Значение функции остаётся неизменным, если угол может быть представлен как (π ± a) или (2π ± a).
Во-вторых, знак приведенной функции не изменяется: если он изначально был положительным, таким и остаётся. Аналогично с отрицательными функциями.
Формулы сложения
Эти формулы выражают величины синуса, косинуса, тангенса и котангенса суммы и разности двух углов поворота через их тригонометрические функции. Обычно углы обозначаются как α и β.
Формулы имеют такой вид:
- sin(α ± β) = sin α * cos β ± cos α * sin.
- cos(α ± β) = cos α * cos β ∓ sin α * sin.
- tg(α ± β) = (tg α ± tg β) / (1 ∓ tg α * tg β).
- ctg(α ± β) = (-1 ± ctg α * ctg β) / (ctg α ± ctg β).
Эти формулы справедливы для любых величин углов α и β.
Формулы двойного и тройного угла
Тригонометрические формулы двойного и тройного угла — это формулы, которые связывают функции углов 2α и 3α соответственно, с тригонометрическими функциями угла α. Выводятся из формул сложения:
- sin2α = 2sinα*cosα.
- cos2α = 1 — 2sin^2 α.
- tg2α = 2tgα / (1 — tg^2 α).
- sin3α = 3sinα — 4sin^3 α.
- cos3α = 4cos^3 α — 3cosα.
- tg3α = (3tgα — tg^3 α) / (1-tg^2 α).
Переход от суммы к произведению
Учитывая, что 2sinx*cosy = sin(x+y) + sin(x-y), упростив эту формулу, получаем тождество sinα + sinβ = 2sin(α + β)/2 * cos(α − β)/2. Аналогично sinα — sinβ = 2sin(α — β)/2 * cos(α + β)/2; cosα + cosβ = 2cos(α + β)/2 * cos(α − β)/2; cosα — cosβ = 2sin(α + β)/2 * sin(α − β)/2; tgα + tgβ = sin(α + β) / cosα * cosβ; tgα — tgβ = sin(α — β) / cosα * cosβ; cosα + sinα = √2sin(π/4 ∓ α) = √2cos(π/4 ± α).
Переход от произведения к сумме
Эти формулы следуют из тождеств перехода суммы в произведение:
- sinα * sinβ = 1/2*;
- cosα * cosβ = 1/2*;
- sinα * cosβ = 1/2*.
Формулы понижения степени
В этих тождествах квадратную и кубическую степени синуса и косинуса можно выразить через синус и косинус первой степени кратного угла:
- sin^2 α = (1 — cos2α)/2;
- cos^2 α = (1 + cos2α)/2;
- sin^3 α = (3 * sinα — sin3α)/4;
- cos^3 α = (3 * cosα + cos3α)/4;
- sin^4 α = (3 — 4cos2α + cos4α)/8;
- cos^4 α = (3 + 4cos2α + cos4α)/8.
Универсальная подстановка
Формулы универсальной тригонометрической подстановки выражают тригонометрические функции через тангенс половинного угла.
- sin x = (2tgx/2) * (1 + tg^2 x/2), при этом х = π + 2πn;
- cos x = (1 — tg^2 x/2) / (1 + tg^2 x/2), где х = π + 2πn;
- tg x = (2tgx/2) / (1 — tg^2 x/2), где х = π + 2πn;
- ctg x = (1 — tg^2 x/2) / (2tgx/2), при этом х = π + 2πn.
Частные случаи
Частные случаи простейших тригонометрических уравнений приведены ниже (k — любое целое число).
Частные для синуса:
Значение sin x | Значение x |
---|---|
0 | πk |
1 | π/2 + 2πk |
-1 | -π/2 + 2πk |
1/2 | π/6 + 2πk или 5π/6 + 2πk |
-1/2 | -π/6 + 2πk или -5π/6 + 2πk |
√2/2 | π/4 + 2πk или 3π/4 + 2πk |
-√2/2 | -π/4 + 2πk или -3π/4 + 2πk |
√3/2 | π/3 + 2πk или 2π/3 + 2πk |
-√3/2 | -π/3 + 2πk или -2π/3 + 2πk |
Частные для косинуса:
Значение cos x | Значение х |
---|---|
0 | π/2 + 2πk |
1 | 2πk |
-1 | 2 + 2πk |
1/2 | ±π/3 + 2πk |
-1/2 | ±2π/3 + 2πk |
√2/2 | ±π/4 + 2πk |
-√2/2 | ±3π/4 + 2πk |
√3/2 | ±π/6 + 2πk |
-√3/2 | ±5π/6 + 2πk |
Частные для тангенса:
Значение tg x | Значение х |
---|---|
0 | πk |
1 | π/4 + πk |
-1 | -π/4 + πk |
√3/3 | π/6 + πk |
-√3/3 | -π/6 + πk |
√3 | π/3 + πk |
-√3 | -π/3 + πk |
Частные для котангенса:
Значение ctg x | Значение x |
---|---|
0 | π/2 + πk |
1 | π/4 + πk |
-1 | -π/4 + πk |
√3 | π/6 + πk |
-√3 | -π/3 + πk |
√3/3 | π/3 + πk |
-√3/3 | -π/3 + πk |
Теоремы
Теорема синусов
Существует два варианта теоремы — простой и расширенный. Простая теорема синусов: a/sin α = b/sin β = c/sin γ. При этом, a, b, c — стороны треугольника, и α, β, γ — соответственно, противолежащие углы.
Расширенная теорема синусов для произвольного треугольника: a/sin α = b/sin β = c/sin γ = 2R. В этом тождестве R обозначает радиус круга, в который вписан заданный треугольник.
Теорема косинусов
Тождество отображается таким образом: a^2 = b^2 + c^2 — 2*b*c*cos α. В формуле a, b, c — стороны треугольника, и α — угол, противолежащий стороне а.
Теорема тангенсов
Формула выражает связь между тангенсами двух углов, и длиной сторон, им противолежащих. Стороны обозначены как a, b, c, а соответствующие противолежащие углы — α, β, γ. Формула теоремы тангенсов: (a — b) / (a+b) = tg((α — β)/2) / tg((α + β)/2).
Теорема котангенсов
Связывает радиус вписанной в треугольник окружности с длиной его сторон. Если a, b, c — стороны треугольника, и А, В, С, соответственно, противолежащие им углы, r — радиус вписанной окружности, и p — полупериметр треугольника, справедливы такие тождества:
- ctg A/2 = (p-a)/r;
- ctg B/2 = (p-b)/r;
- ctg C/2 = (p-c)/r.
Прикладное применение
Тригонометрия — не только теоретическая наука, связанная с математическими формулами. Её свойствами, теоремами и правилами пользуются на практике разные отрасли человеческой деятельности — астрономия, воздушная и морская навигация, теория музыки, геодезия, химия, акустика, оптика, электроника, архитектура, экономика, машиностроение, измерительные работы, компьютерная графика, картография, океанография, и многие другие.
Синус, косинус, тангенс и котангенс — основные понятия тригонометрии, с помощью которых математически можно выразить соотношения между углами и длинами сторон в треугольнике, и найти искомые величины через тождества, теоремы и правила.